Quantitative cell imaging using single beam phase retrieval method.
نویسندگان
چکیده
Quantitative three-dimensional imaging of cells can provide important information about their morphology as well as their dynamics, which will be useful in studying their behavior under various conditions. There are several microscopic techniques to image unstained, semi-transparent specimens, by converting the phase information into intensity information. But most of the quantitative phase contrast imaging techniques is realized either by using interference of the object wavefront with a known reference beam or using phase shifting interferometry. A two-beam interferometric method is challenging to implement especially with low coherent sources and it also requires a fine adjustment of beams to achieve high contrast fringes. In this letter, the development of a single beam phase retrieval microscopy technique for quantitative phase contrast imaging of cells using multiple intensity samplings of a volume speckle field in the axial direction is described. Single beam illumination with multiple intensity samplings provides fast convergence and a unique solution of the object wavefront. Three-dimensional thickness profiles of different cells such as red blood cells and onion skin cells were reconstructed using this technique with an axial resolution of the order of several nanometers.
منابع مشابه
Derivative method for phase retrieval in off-axis quantitative phase imaging.
We present a method for phase retrieval in off-axis interferometric systems. By numerically calculating the transverse 1st and 2nd order derivatives of the interferogram, we show that one can directly retrieve the quantitative phase image, without the need for Fourier or Hilbert transformations. Because of this, the method is significantly faster than the current approaches. We illustrate our m...
متن کاملNoniterative approach to the missing data problem in coherent diffraction imaging by phase retrieval.
When a very intense beam is used for illuminating an object in coherent x-ray diffraction imaging, the intensities at the center of the diffraction pattern for the object are cut off by a beam stop that is utilized to block the intense beam. Until now, only iterative phase-retrieval methods have been applied to object reconstruction from a single diffraction pattern with a deficiency of central...
متن کاملSimple merging technique for improving resolution in qualitative single image phase contrast tomography.
For dynamic samples and/or for simple ease-of-use experiments, single-image phase contrast tomography is a very effective method for the 3D visualization of materials which would otherwise be indiscernible in attenuation based x-ray imaging. With binary samples (e.g. air-material) and monochromatic wavefields a transport-of-intensity (TIE)-based phase retrieval algorithm is known to retrieve ac...
متن کاملNon-iterative imaging of inhomogeneous cold atom clouds using phase retrieval from a single diffraction measurement.
We demonstrate a new imaging technique for cold atom clouds based on phase retrieval from a single diffraction measurement. Most single-shot diffractive imaging methods for cold atoms assume a monomorphic object to extract the column density. The method described here allows quantitative imaging of an inhomogeneous cloud, enabling recovery of either the atomic density or the refractive index, p...
متن کاملPhase imaging using a polychromatic x-ray laboratory source.
We describe a quantitative phase imaging process using an x-ray laboratory-based source with an extremely broad bandwidth spectrum. The thickness of a homogeneous object can be retrieved by using separately spectrally weighted values for the attenuation coefficient and the decrement of the real part of the refractive index. This method is valid for a wide range of object types, including object...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical optics
دوره 16 6 شماره
صفحات -
تاریخ انتشار 2011